Microbial Diversity in Sulfate-Reducing Marine Sediment Enrichment Cultures Associated with Anaerobic Biotransformation of Coastal Stockpiled Phosphogypsum (Sfax, Tunisia)
نویسندگان
چکیده
Anaerobic biotechnology using sulfate-reducing bacteria (SRB) is a promising alternative for reducing long-term stockpiling of phosphogypsum (PG), an acidic (pH ~3) by-product of the phosphate fertilizer industries containing high amounts of sulfate. The main objective of this study was to evaluate, for the first time, the diversity and ability of anaerobic marine microorganisms to convert sulfate from PG into sulfide, in order to look for marine SRB of biotechnological interest. A series of sulfate-reducing enrichment cultures were performed using different electron donors (i.e., acetate, formate, or lactate) and sulfate sources (i.e., sodium sulfate or PG) as electron acceptors. Significant sulfide production was observed from enrichment cultures inoculated with marine sediments, collected near the effluent discharge point of a Tunisian fertilizer industry (Sfax, Tunisia). Sulfate sources impacted sulfide production rates from marine sediments as well as the diversity of SRB species belonging to Deltaproteobacteria. When PG was used as sulfate source, Desulfovibrio species dominated microbial communities of marine sediments, while Desulfobacter species were mainly detected using sodium sulfate. Sulfide production was also affected depending on the electron donor used, with the highest production obtained using formate. In contrast, low sulfide production (acetate-containing cultures) was associated with an increase in the population of Firmicutes. These results suggested that marine Desulfovibrio species, to be further isolated, are potential candidates for bioremediation of PG by immobilizing metals and metalloids thanks to sulfide production by these SRB.
منابع مشابه
Microbial manganese reduction by enrichment cultures from coastal marine sediments.
Manganese reduction was catalyzed by enrichment cultures of anaerobic bacteria obtained from coastal marine sediments. In the absence of oxygen, these enrichment cultures reduced manganates when grown on either lactate, succinate, or acetate in both sulfate-free and sulfate-containing artificial seawaters. Sodium azide as well as oxygen completely inhibited microbial manganese reduction by thes...
متن کاملMicrobial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients.
Microbial communities in coastal subsurface sediments are scarcely investigated and have escaped attention so far. But since they are likely to play an important role in biogeochemical cycles, knowledge of their composition and ecological adaptations is important. Microbial communities in tidal sediments were investigated along the geochemical gradients from the surface down to a depth of 5.5 m...
متن کاملAnaerobic Degradation of Hexadecan-2-one by a Microbial Enrichment Culture under Sulfate-Reducing Conditions.
A microbial enrichment culture from marine sediment was able to grow on hexadecan-2-one as the sole source of carbon and energy under sulfate-reducing conditions. Oxidation of the ketone involved carboxylation reactions and was coupled to sulfide production. This enrichment culture also grew on 6,10,14-trimethylpentadecan-2-one.
متن کاملBiotransformation of phosphogypsum by bacteria isolated from petroleum-refining wastewaters.
The biotransformation of phosphogypsum in cultures of sulfate-reducing bacteria (SRB) isolated from crude petroleum-refining wastewaters or purified using activated sludge method was studied. Selection was with the microcosms method on Postgate and minimal medium with different carbon sources, Emerson medium and petroleum-refining wastewaters. Highest hydrogen sulfide production, in excess of 5...
متن کاملOn the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.
The anaerobic oxidation of methane (AOM) in the marine subsurface is a significant sink for methane in the environment, yet our understanding of its regulation and dynamics is still incomplete. Relatively few groups of microorganisms consume methane in subsurface environments--namely the anaerobic methanotrophic archaea (ANME clades 1, 2 and 3), which are phylogenetically related to methanogeni...
متن کامل